Explanation Guided Contrastive Learning for Sequential

Lei Wang, Ee-Peng Lim*
Singapore Management University
Singapore
{lei.wang.2019@phdcs.,eplim@}smu.edu.sg

Zhiwei Liu Salesforce USA zhiweiliu@salesforce.com Tianxiang Zhao Penn State University USA tkz5084@psu.edu

code: https://github.com/demoleiwang/EC4SRec.

CIKM 2022

Introduction

Figure 1: Motivation example: (a) A given user sequence with seven items and a red hair-dryer as the next item; (b) Two positive views generated by random mask operations on the given sequence and a negative view which is the sequence of another user. [M] represents a masked item.

When the positive and negative sequences turn out to be false positive and false negative respectively, it may lead to degraded recommendation performance. In this work, we address the above problem by proposing Explanation Guided Augmentations (EGA) and Explanation Guided Contrastive Learning for Sequential Recommendation (EC4SRec) model framework.

EC4SRec then combines both self-supervised and supervised contrastive learning over the positive and negative sequences generated by EGA operations to improve sequence representation learning for more accurate recommendation results.

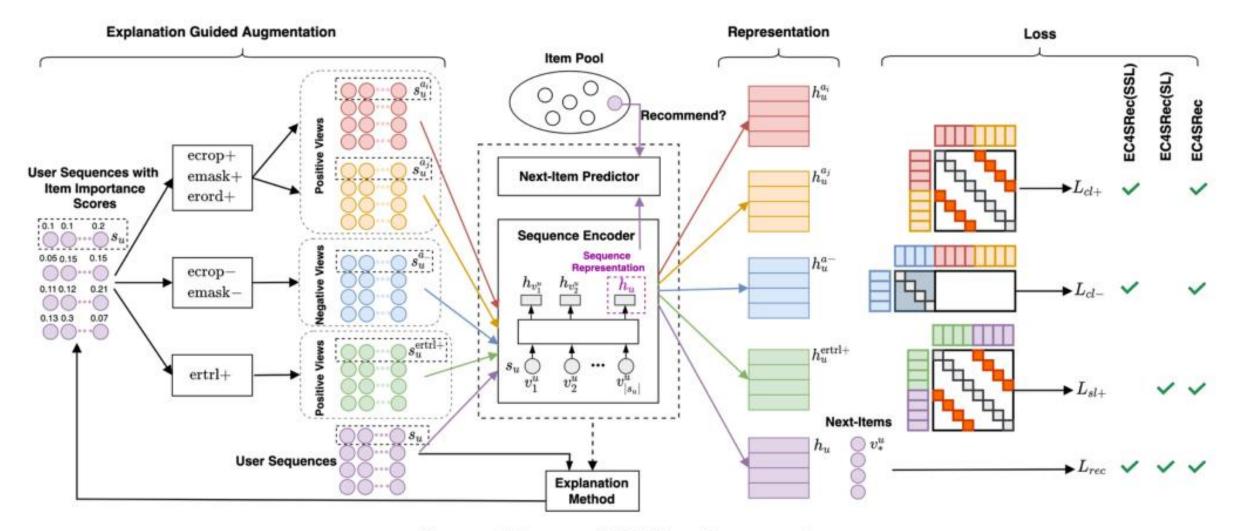


Figure 2: Proposed EC4SRec Framework.

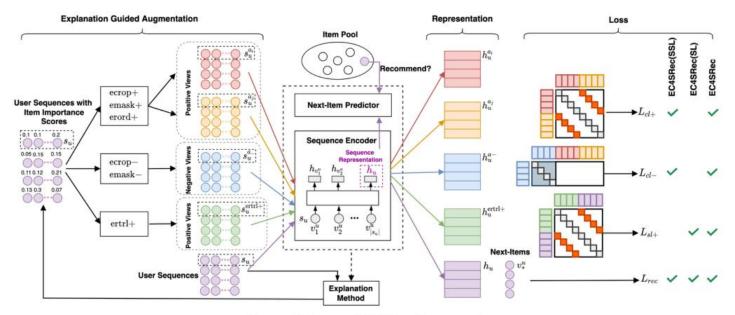


Figure 2: Proposed EC4SRec Framework.

$$\mathcal{L}_{rec}(s_u) = -\log \frac{\exp(sim(h_u, h_{v_*^u}))}{\exp(sim(h_u, h_{v_*^u})) + \sum_{v^- \in V^-} \exp(sim(h_u, h_{v^-}))}$$
(2)

$$\mathcal{L}_{CL4SRec} = \sum_{u \in U_B} \mathcal{L}_{rec}(s_u) + \lambda \mathcal{L}_{cl}(s_u^{a_i}, s_u^{a_j}) \tag{1}$$

$$\mathcal{L}_{cl}(s_u^{a_i}, s_u^{a_j}) = -\log \frac{\exp(sim(h_u^{a_i}, h_u^{a_j}))}{\exp(sim(h_u^{a_i}, h_u^{a_j})) + \sum_{s^- \in S_u^-} \exp(sim(h_u^{a_i}, h^-))}$$
(3)

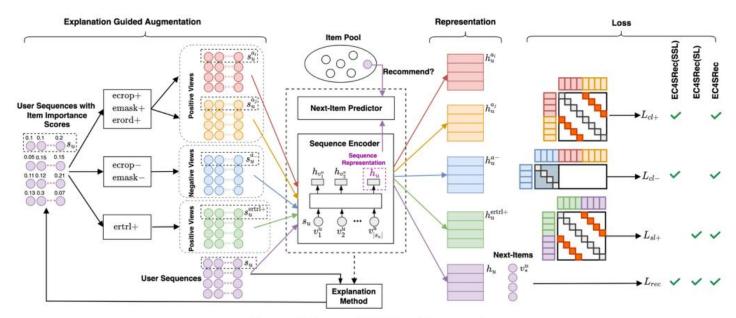


Figure 2: Proposed EC4SRec Framework.

$$\mathcal{L}_{DuoRec} = \sum_{u \in U_R} \mathcal{L}_{rec}(s_u) + \lambda \mathcal{L}_{sl}(s_u)$$
 (4)

$$\mathcal{L}_{sl}(s_u) = -\left(\log\frac{\exp(sim(h_u,h_u^{\text{rtrl}})/\tau)}{\exp(sim(h_u,h_u^{\text{rtrl}})/\tau) + \sum_{s^- \in S_u^-} \exp(sim(h_u,h^-)/\tau)} + \log\frac{\exp(sim(h_u^{\text{rtrl}},h_u)/\tau)}{\exp(sim(h_u^{\text{rtrl}},h_u)/\tau) + \sum_{s^- \in S_u^-} \exp(sim(h_u^{\text{rtrl}},h^-)/\tau)}\right) + \log\frac{\exp(sim(h_u^{\text{rtrl}},h_u)/\tau)}{\exp(sim(h_u^{\text{rtrl}},h_u)/\tau) + \sum_{s^- \in S_u^-} \exp(sim(h_u^{\text{rtrl}},h^-)/\tau)}\right)$$

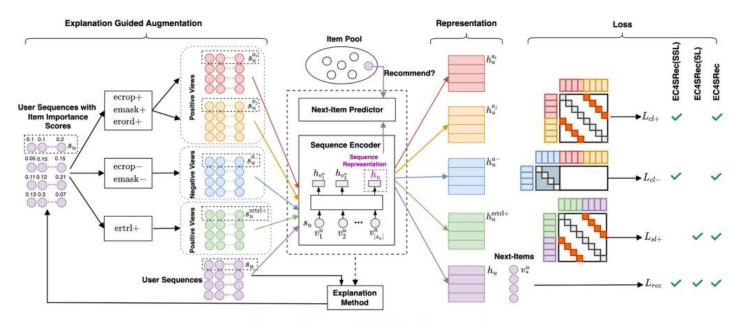


Figure 2: Proposed EC4SRec Framework.

$$score(v_i^u) = \frac{\sum_{j=1}^{d} score(e_{v_{i,j}^u})}{\sum_{i'=1}^{|s_u|} \sum_{j=1}^{d} score(e_{v_{i',j}^u})}$$
(5)
$$\mathcal{L}_{EC4SRec(SSL)} = \sum_{u \in U_B} \mathcal{L}_{rec}(s_u) + \lambda_{cl+}(\mathcal{L}_{cl+}(s_u) + \lambda_{cl-}\mathcal{L}_{cl-}(s_u))$$
(6)

$$score(e_{v_{i,j}^u}) = \|\frac{\partial y_u}{\partial e_{v_{i,j}^u}}\|$$

 $\mathcal{L}_{sl+}(s_u) =$

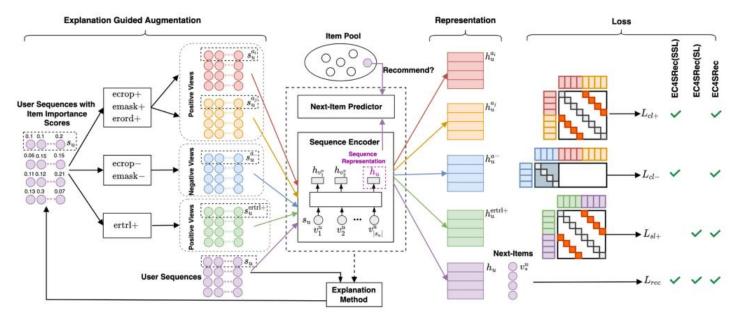


Figure 2: Proposed EC4SRec Framework.

$$\mathcal{L}_{EC4SRec(SL)} = \sum_{u \in U_B} \mathcal{L}_{rec}(s_u) + \lambda \mathcal{L}_{sl+}(s_u)$$
 (7)

$$-\left(\log \frac{\exp(sim(h_u, h_u^{ertrl+})/\tau)}{\exp(sim(h_u, h_u^{ertrl+})/\tau) + \sum_{s^- \in S_u^-} \exp(sim(h_u, h^-)/\tau)} + \log \frac{\exp(sim(h_u^{ertrl+}, h_u)/\tau)}{\exp(sim(h_u^{ertrl+}, h_u)/\tau) + \sum_{s^- \in S_u^-} \exp(sim(h_u^{ertrl+}, h^-)/\tau)}\right)$$
(8)

$$\mathcal{L}_{EC4SRec} = \sum_{u \in U_B} \mathcal{L}_{rec}(s_u) + \lambda_{cl+} \mathcal{L}_{cl+}(s_u) + \lambda_{cl-} \mathcal{L}_{cl-}(s_u) + \lambda_{sl+} \mathcal{L}_{sl+}(s_u)$$
(9)

Table 1: Results of CL4SRec on synthetic dataset with ground truth important items.

Masking Op.	Random	Oracle-based		
HR@3	0.3560	0.5180		
NDCG@3	0.2573	0.3645		

Table 2: Dataset Statistics After Preprocessing.

Dataset	Beauty	Clothing	Sports	ML-1M
Users	22,363	39,387	35,598	6,041
Items	12,101	23,033	18,357	3,417
User-item Interactions	198,502	278,677	296,337	999,611
Avg Sequence Length	8.9	7.1	8.3	165.5
Sparsity	99.93%	99.97%	99.95%	95.16%

Table 3: Overall Results. (The best and second best results are boldfaced and underlined. *: significant improvement of EC4SRec(SSL) over CL4SRec with p-value= 0.05. **: significant improvement of EC4SRec(SL) over DuoRec with p-value= 0.01.)

Dataset	1		Non-Seq.	5	Seq. Rec. v	w/o Contra	stive Learnin	g		Seq. Rec. wit	h Contrast	ive Learning	
	Metric	BPR-MF	GRU4Rec	Caser	SASRec	BERT4Rec	S ³ Rec _{MIP}	CL4SRec	EC4SRec(SSL)**	DuoRec	EC4SRec(SL)*	EC4SRec	
	HR@5	0.0120	0.0164	0.0191	0.0365	0.0193	0.0327	0.0495	0.0569	0.0548	0.0585	0.0569	
	HR@10	0.0299	0.0365	0.0335	0.0627	0.0401	0.0591	0.0810	0.0853	0.0832	0.0867	0.0862	
Beauty	NDCG@5	0.0065	0.0086	0.0114	0.0236	0.0187	0.0175	0.0299	0.0358	0.0345	0.0361	0.0364	
	NDCG@10	0.0122	0.0142	0.0160	0.0281	0.0254	0.0268	0.0401	0.0450	0.0436	0.0455	0.0458	
Clothing	HR@5	0.0067	0.0095	0.0049	0.0168	0.0125	0.0163	0.0187	0.0201	0.0196	0.0205	0.0209	
	HR@10	0.0094	0.0165	0.0092	0.0272	0.0208	0.0237	0.0305	0.0314	0.0296	0.0311	0.0320	
	NDCG@5	0.0052	0.0061	0.0029	0.0091	0.0075	0.0101	0.0104	0.0113	0.0112	0.0115	0.0119	
	NDCG@10	0.0069	0.0083	0.0043	0.0124	0.0102	0.0132	0.0142	0.0149	0.0144	0.0149	0.0155	
	HR@5	0.0092	0.0137	0.0121	0.0218	0.0176	0.0157	0.0277	0.0323	0.0310	0.0317	0.0331	
Cucanto	HR@10	0.0188	0.0274	0.0204	0.0336	0.0326	0.0265	0.0455	0.0497	0.0480	0.0491	0.0514	
Sports	NDCG@5	0.0053	0.0096	0.0076	0.0127	0.0105	0.0098	0.0167	0.0201	0.0191	0.0194	0.0203	
	NDCG@10	0.0085	0.0137	0.0103	0.0169	0.0153	0.0135	0.0224	0.0256	0.0246	0.0249	0.0262	
	HR@5	0.0164	0.0763	0.0816	0.1087	0.0733	0.1078	0.1583	0.1699	0.1672	0.1682	0.1672	
MT 1M	HR@10	0.0354	0.1658	0.1593	0.1904	0.1323	0.1952	0.2423	0.2543	0.2507	0.2526	0.2533	
ML-1M	NDCG@5	0.0097	0.0385	0.0372	0.0638	0.0432	0.0616	0.0996	0.1095	0.1076	0.1104	0.1102	
	NDCG@10	0.0158	0.0671	0.0624	0.0910	0.0619	0.0917	0.1267	0.1368	0.1345	0.1375	0.1380	

Table 4: Results of EC4SRec with different Sequential Recommendation Backbones.

				Beauty		P	(Clothing				Sports	
Backbone		HR@5	HR@10	NDCG@5	NDCG@10	HR@5	HR@10	NDCG@5	NDCG@10	HR@5	HR@10	NDCG@5	NDCG@10
	CL4SRec	0.0420	0.0640	0.0270	0.0341	0.0104	0.0180	0.0065	0.0089	0.0244	0.0389	0.0154	0.0200
	EC4SRec(SSL)	0.0461	0.0674	0.0314	0.0382	0.0128	0.0213	0.0082	0.0109	0.0253	0.0396	0.0167	0.0213
CDIMP	DuoRec	0.0471	0.0689	0.0318	0.0388	0.0118	0.0193	0.0078	0.0102	0.0259	0.0396	0.0163	0.0207
GRU4Rec	EC4SRec(SL)	0.0490	0.0717	0.0327	0.0401	0.0130	0.0201	0.0086	0.0108	0.0273	0.0414	0.0173	0.0218
	EC4SRec	0.0495	0.0745	0.0332	0.0412	0.0138	0.0218	0.0089	0.0115	0.0276	0.0437	0.0182	0.0233
Caser	CL4SRec	0.0185	0.0335	0.0108	0.0157	0.0058	0.0100	0.0036	0.0049	0.0113	0.0191	0.0071	0.0096
	EC4SRec(SSL)	0.0228	0.0390	0.0137	0.0189	0.0064	0.0113	0.0039	0.0055	0.014	0.0244	0.0088	0.0121
	DuoRec	0.0207	0.0375	0.0129	0.0183	0.0053	0.0100	0.0031	0.0046	0.0127	0.0215	0.0082	0.0110
	EC4SRec(SL)	0.0262	0.0439	0.0161	0.0218	0.0064	0.0117	0.0039	0.0056	0.0146	0.0240	0.0097	0.0127
	EC4SRec	0.0269	0.0456	0.0172	0.0232	0.0065	0.0124	0.0041	0.0060	0.0152	0.0266	0.0105	0.0139

Table 5: NDCG@5 Results of EC4SRec(SSL), abbreviated by E(SSL), with the removal of augmentation operation on Beauty, Clothing and Sports.

	Beau	ıty	Cloth	ing	Sports			
	CL4SRec	E(SSL)	CL4SRec	E(SSL)	CL4SRec	E(SSL)		
None	0.0299	0.0358	0.0104	0.0113	0.0167	0.0201		
-rord	0.0307	0.0344	0.0103	0.0110	0.0169	0.0181		
-mask	0.0311	0.0350	0.0101	0.0116	0.0169	0.0200		
-crop	0.0282	0.0353	0.0086	0.0116	0.0147	0.0200		

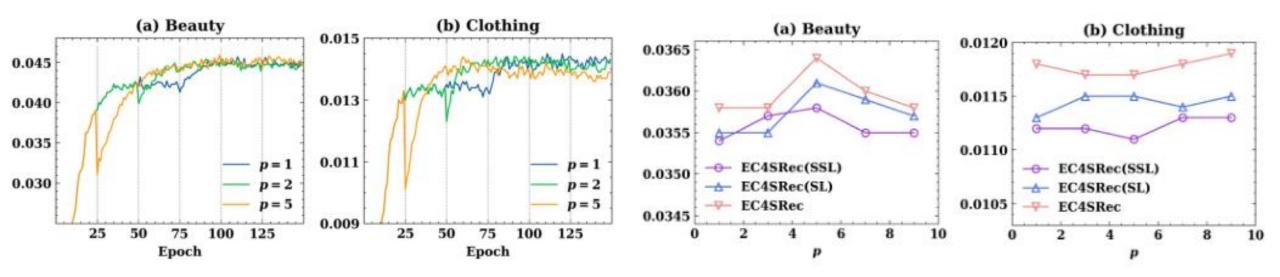


Figure 3: Changes of NDCG@5 for EC4SRec using different update schedules over 150 training epoches (p: number of importance score updates in training)

Figure 4: NDCG@5 Results with different update schedule settings (p: number of updates in model training).

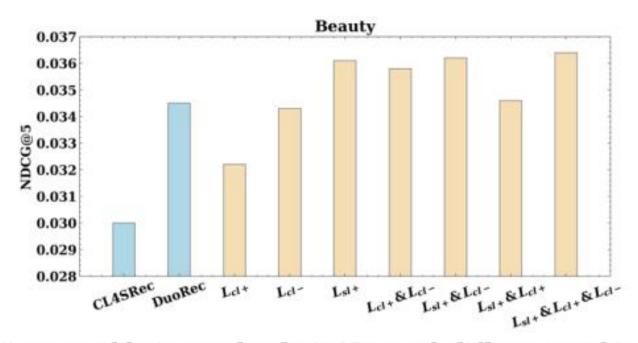


Figure 5: Ablation study of EC4SRec with different combinations of loss functions on Beauty dataset. (EC4SRec results are shown in yellow bars. As \mathcal{L}_{rec} is included by default, EC4SRec(SSL) = EC4SRec with $\mathcal{L}_{cl+} + \mathcal{L}_{cl-}$; EC4SRec(SL) = EC4SRec with \mathcal{L}_{sl+} , and EC4SRec = one with all three losses.)

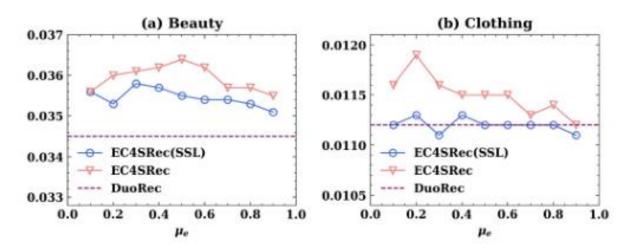


Figure 6: NDCG@5 of EC4SRec with different μ_e settings.

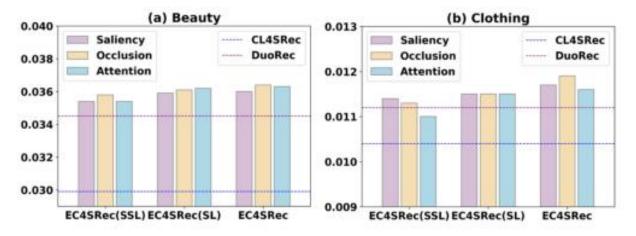


Figure 7: NDCG@5 using different explanation methods.

Thanks